

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Internal Memorandum 3878-82-QR1-IM4

March 1982

SRI CAMERA EXPERIMENT CONTROLLER/INTERFACE

By: Steven Damron, Research Physicist Electromagnetic Sciences Laboratory

Prepared for:

DARPA/TTO 1400 Wilson Blvd. Arlington, VA 22209 Attn: Dr. A. Bruckheim

CONTRACT NOO014-82-C-0092

SRI Project 3878

OCT 7 1983

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

THE RUTH M. MODILLA TECHNICAL LICENSEY

60 - 1682 WAL BELLEVIE CO.

This document has been approved for public release and sale; its distribution is unlimited.

333 Ravenswood Ave. • Menlo Park, CA 94025 (415) 859-6200 • TWX: 910-373-2046 • Telex: 334 486

```
8A1 - DIST. LIMITATION:
                                UNLIMITED
   8B - CONTRACTOR ACCESS:
                                YES
--10A1 - PRIMARY PROGRAM ELEMENT:
                                      61101E
 -10A2 - PRIMARY PROJECT NUMBER:
                                      REIM
-10A2A - PRIMARY PROJECT AGENCY AND PROGRAM:
                                                  REIM
--10A3 - PRIMARY TASK AREA:
--- 10A4 - WORK UNIT NUMBER:
                                D5413A
-- 1001 - CONTRIBUTING PROGRAM ELEMENT (2ND):
--10C2 - CONTRIBUTING PROJECT NUMBER (2ND): ENVIRONMENT
 -1003 - CONTRIBUTING TASK AREA (2ND):
   11 - TITLE: (U) SEA TRUTH FOR LIDEX PROGRAM-
  11A - TITLE SECURITY: U
   12 - S + T AREAS:
                    009600 MASERS AND LASERS
                  .012800 PHYSICAL DCEANDGRAPHY
                  - 005200 DYNAMIC DCEANOGRAPHY
   13 - WORK UNIT START DATE:
                                OCT 82
  14 - ESTIMATED COMPLETION DATE: SEP 83
  15A - PRIMARY FUNDING AGENCY: NAUY
   16 - PERFORMANCE METHOD:
                                CONTRACT
--17A1 - CONTRACT/GRANT EFFECTIVE DATE:
                                            DCT 82
--17A2 - CONTRACT/GRANT EXPIRATION DATE:
                                            SEP 83
 - 17B - CONTRACT/GRANT NUMBER: N00014-82-0-0092
```



```
-- 19A - DOD DRGANIZATION:
                               NAUAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY
-- 19B - DOD ORG. ADDRESS:
                               NSTL STATION, MS 39529
-- 190 - RESPONSIBLE INDIVIDUAL:
                                       HOLLMAN, R
-- 19D - RESPONSIBLE INDIVIDUAL PHONE: 601-688-4760
-- 19U - DOD ORGANIZATION LOCATION CODE: 2805
-- 19S - DOD DRGANIZATION SORT CODE:
-- 19T - DOD ORGANIZATION CODE: 392773
                                       SRI INTERNATIONAL
-- 20A - PERFORMING DRGANIZATION:
                                       MENLO PARK, CA 94025
-- 20B - PERFORMING ORG. ADDRESS:
-- 20C - PRINCIPAL INVESTIGATOR:
                                       HONEY, RICHARD
-- 20D - PRINCIPAL INVESTIGATOR PHONE:
                                        415-859-2759
-- 20F - ASSOCIATE INVESTIGATOR (1ST): MODRE, CHESTER
-- 20U - PERFORMING ORGANIZATION LOCATION CODE: 0612
-- 20N - PERF. DRGANIZATION TYPE CODE: W
-- 20S - PERFORMING DRG. SDRT CODE:
-- 20T - PERFORMING DRGANIZATION CODE:
                                             410281
                                                         (U) OPTICAL
    22 - KEYWORDS: (U) LASER (U) INTERNAL WAVES
       DCEANDGRAPHY
                               (U) CONTINUE PROVIDING TECHNICAL SUPPORT TO
    23 - TECHNICAL OBJECTIVE:
       THE DARPA LIDEX PROGRAM.
                   (U) PARTICIPATE IN THE LIDEX-PROGRAM BY COLLECTING AND
    24 - APPROACH:
       REDUCING SEA TRUTH DATA IN SUPPORT OF LIDAR TESTS, TO CONTINUE WITH THE
       DEVELOPMENT, TESTING, AND USE OF INSTRUMENTATION FOR IN-SITU
       MEASUREMENTS OF OPTICAL DATA ON SEA WATER PARTICULARLY FOR TOWED
       OPERATIONS AND TO CONTINUE TO PROVIDE TECHNICAL CONSULTATION AND
       PLANNING TO THE LIDEX PROGRAM.
   25 - PROGRESS: - (U) A SEA TRUTH INSTURMENTATION SUITE HAS BEEN DEVELOPED
       IN A FORM APPROPRIATE FOR MEASURING OPTICAL PARAMETERS OF SEAWATER OF
       INTEREST TO LIDAR APPLICATIONS FROM A DRIFTING VESSEL. THESE SEA TRUTH PARAMETERS INCLUDE BEAM SPREAD FUNCTION, BACKSCATTER COEFFICIENT, AND
       DIFFUSE ATTENUATION COEFFICIENT, IN ADDITION: A COMPUTERIZED DATA
       COLLECTION SYSTEM HAS BEEN ACQUIRED AS WELL AS DEVELOPMENT OF A REAL-
       TIME ANALYSIS SYSTEM.
                         (U) ATTENUATION :(U) COEFFICIENTS:(U) COMPUTER
    37 - DESCRIPTORS:
                     (U) DATA ACQUISITION (U) DIFFUSION (U) DRIFT (U)
       APPLICATIONS
                  (U) INFORMATION SYSTEMS
                                                (U) INTERNAL WAVES
       FUNCTIONS
       LASERS;(U) LOGISTICS SUPPORT;(U) MEASUREMENT;(U) DCEANOGRAPHIC DATA;
       (U) DCEANDGRAPHY: (U) DPERATION : (U) DPTICAL ANALYSIS : (U) DPTICAL DATA: (U) DPTICAL RADAR : (U) DPTICS: (U) PARAMETERS : (U) REAL
                                (U) SHIPS (U) SPREAD SPECTRUM (U) TEST
              ;(U) SEA WATER
       METHODS: (U) TOWED BODIES:
```

17 DEC 82

39 - PROCESSING DATE (RANGE):

--****

I INTRODUCTION

The camera experiment controller interface provides communications between an HP9845 desk-top computer and a digital camera instrumentation set. It is used with two cameras in separate experiments. One camera is in an underwater housing used for measurement of beam spread function. The second camera is used aboard the vessel at the output focal plane of an optical spectrograph. The digital camera set includes the 100 x 100 pixel digital Reticon camera with its RS250 controller, the ITT microchannel plate (MCP) image intensifer with its electronic "gate" or shutter, and a Graflex strobe light source". The interface sends all the electronic signals needed to control the instrumentation set. The HP9845, in turn, programs the interface with the timings required for the desired experiment. The HP9845 also reads out image data stored in a 16K x 8-bit memory in the interface. Thus, two independent levels of operation take place in the interface: control of the camera experiment; and data communication between the HP9845 and digital camera. Both levels of operation are discussed below.

A. Interface Control of Reticon Instrumentation Set

The three experimental instruments to which the interface is directly connected are a Graflex strobe unit, an ITT MCP image intensifier and a Reticon RS250 camera controller. In addition, the interface monitors the output of a photodiode "light meter" that provides a measure of illumination level for control of camera exposure. The interface can send the following signals to the following instruments:

Instrument	Signal
145 CLUWEIIC	21 gust

Graflex Strobe Fire strobe (-150 V)

ITT Image Intensifier Gate on (+5 V)/Gate off (0 V)
Intensifer Gain (0 - +10 V)

Reticon RS250 ESTART (begin frame acquisition) ECLK (external timing signal)

^{*}The strobe light source is used for beam spread function (BSF)
measurements. In the case of the Fiber Optic Spectrometer System for
Underwater Measurements (FOSSUM), this stroboscopic light source is not
used.

To send these signals at the appropriate times, the HP9845 loads information into eight registers (Reg 0-7) of the interface. During experiment control, the interface examines each register once per microsecond to determine if any signals need to be sent. Reg. 0 contains an 8-bit number which sets the gain of the image intensifier. Reg. I is a cutoff value to protect the image intensifier from over-exposure conditions. When the product of the intensifier gain (Reg. 0) and the digital value of the photodiode "light meter" mentioned above exceeds the value stored in Reg. 1, the experiment is automatically turned off. The other six registers (Reg. 2-7) contain a time in microseconds at which an experimental function should occur. Each microsecond these registers are compared with the experiment clock and a function is executed when the register value equals the experiment clock value. The functions of these six registers are listed here:

Reg.	<u>Function</u>		
2	ESTART1 - time at which first (dark) image frame is acquired. This frame is used to clear the data memory.		
3	Intensifier Gate On - time at which the intensifier gate is turned on.		
4	Experiment Reset time - time at which the experiment clock is reset and starts counting up again. This time cannot exceed 16.5 seconds.		
5	Strobe Start Time - time at which the strobe is fired. Typical strobe duration in 3 ms.		
6	ESTART2 - time at which the second image frame is acquired.		
7	Intensifier Gate off - time at which the intensifer gate is turned off.		

There are two rules which govern the execution of any of Reg 2 through 7. First, the experiment clock starts with a value of 8 microseconds, so any register which has a value less than 8 will never equal the experiment clock value and, therefore, never initiate an execution of a function. The register values should never be 0. The second rule is that if all six timing registers are less than the experiment clock value the experiment execution automatically stops after a single execution of the experiment.

Some examples will show how this experiment control works. Suppose the experiment is to set off the strobe and record a picture (single-frame mode). The registers could be loaded with the following values:

Reg.	Value	
0	Arbitrary (decided by light level)	
1	Arbitrary	
2	ESTART1 - 10 µs	
3	Intensifier on - 11000 µs	
4	Reset time - 6 µs (not executed)	
5	Strobe start time - 11001 µs	
6	ESTART 2 - 15001 μs	
7	Intensifier off - 15000 µs	

Using the two rules listed, it can be seen that a frame will be acquired starting 10 μ s to clear the CCD array. It should be noted that it takes 11 msec to transfer an image from Reticon tp HP9845. When the CCD is clear, the intensifier will be turned on and the strobe flashed. The image of the flash will be recorded 15 ms later, right after the intensifier is turned off. Note that since the reset time is less than 8 μ s, it is not executed. Therefore, when the experiment clock exceeds all the register values, the experiment stops.

Now suppose a continuous frame mode were desired, with a frame to be recorded every 50 msec. The registers would be set as follows:

Reg.	Value		
0	Arbitrary (depends on light level)		
1	Arbitrary		
2	ESTART1 - 6 μs		
3	Intensifier on - 2000 µS		

KATOMON NEGOCIO DESPENDI

4		Reset time - 50,008 µs
5	•	Strobe start time - 2001 µs
6		ESTART2 - 5500 μs
7		Intensifier off - 5450 us

In this second example, it can be seen that the ESTART1 command is never executed and that the process repeats every time the experiment clock reaches 50008 μ s. The process will stop only when the HP9845 resets the interface.

Another feature of the interface is the recording of the photodiode "light meter" data value in the 16K memory of the interface. When the interface is not recording image data, it continuously places the photodiode value into a known memory address. When the strobe function in Reg. 5 is executed, the photodiode values are recorded every 8 µs into an array in the memory. This allows the acquisition of a time history of the ambient light level. Since other procedures permit the strobe to be fired without the camera taking a picture or the intensifier being turned on, it is possible to find the light level to which the intensifier will be exposed without turning on the camera intensifer. The following register values permit use of the photo diode as a light meter:

Reg.	Value	
0	0	
1	0	
2	ESTART1 - 2 µs	
3	Intensifer on - 2 µs	
4	Reset time - 2 µs	
5	Strobe time - 10 µs	

THE PARTY OF THE PROPERTY PROPERTY OF THE PROP

ESTART2 - 50,000 μs

Intensifier off - 2 μs

The interface register values can be reset while the experiment clock is running. This would allow, for instance, modification of the intensifier gain during image acquisition.

The interface also has an external synch switch and connector. When switched on, the experiment clock will not commence until the synch connector receives a "true" level TTL signal longer then one microsecond.

B. HP9845 Communication with the Interface

The HP9845 presents 16 output lines to the interface and receives 16 inputs lines from the interface via the HP98032A 16-bit interface. The interface provides the proper signals to "talk" to the HP9845. The words which the HP9845 sends to the interface contain instructions and data. The lower order byte contains data (when applicable); the high order byte contains 8-bits of instructions for the interface. The high order byte looks like this:

Bit	Instruction		
15	Load data from HP to latch		
14	Load data from latch to HP (with bit 8 on, set up for DMA)		
13	Load data from register to latch		
12	Load data from latch to register		
11	EXECUTE EXPERIMENT		

	Bit 12 or 13 on	Bit 14 on	Bit 15 on
10	MSB Register	Latch Byte 3	Latch Byte 3
11	Register	Latch Byte 2	Latch Byte 2
12	LSB Register	DMA	

The instruction set above allows the HP9845 to move data a byte at a time through a 24-bit wide "latch" into one of the interface's 8 registers (Reg. 0-7). It fills the latch with three low-order data bytes then fills one of the registers with the latch. The instruction set also allows the HP9845 to read any of the interface's registers. This is accomplished by loading the latch with the desired register and then reading out the latch to the HP9845. Since the latch is 24-bits wide, it takes three reads for the HP9845 to completely read the latch. After the registers have been loaded with the proper timings and values, the experiment will start when the interface recieves a word with bit 11 on.

The image data and the time history of the photodiode are transferred to the HP9845 via DMA. First the HP9845 must send a word with bits 14 and 8 on. It must next input in DMA format 10,010 or 16,384 words. 10,010 words are input when only the image is desired; 16,384 words are input when the photodiode time history is desired as well. The value of the CTLO line in the HP98032A interface determines how many words will be input. DMA's may occur while an experiment is taking place, but recording image data takes priority over the interface memory. Data transferred via DMA has only the low-order byte valid.

The following subprogram illustrates the four basic operations—loading the interface registers (cf., "Hp to registers"), reading the interface registers back into the HP (cf., "Registers to hp"), starting the experiment (cf., "Execute"), and reading in a picture via DMA (cf., "Dma picture"). Two subprograms also convert real variables with timings stored in them into integer variables that can be sent to the interface and vice versa.

```
3950
      REM
3960
      REM
3978
      REH
3988
          Hprc(Info, Bo_pixel_corrct)
3998
      REM
           This routine drives the HP98032A interface and talks to the
4888
      REM
4810
      REM
           SRI control box, the so-cailed HPRC. Values of Info cause
4828
      REM
           different actions to happen.
4838
      REM
                              Info = 1 --> Run Experiment
      REM
4048
4858
      REM
                              Info = 2 --> Load Timings
                              Info = 3 --> Load Gain
4060
      REM
                              Info = 4 --> BMA into Raw_data
4070
      REM
4888
      REH
4898
      REM
           Note that in loading the timings or the gain, this routine
           automatically recalls the loaded values for verification.
4188
      REM
4118
           The recalled values are placed back into Timings and the
4120
           calling routine is responsible for handling an error in
           loading the Timings variables. The Do_pixel_corrct para-
4138
      REM
           meter fixes the odd pixels for the SRI camera which is
4148
      REM
           missing output from its odd pixels.
4150
      REM
4168
      REM
      COM INTEGER Select_code, Raw_data(+), Packed_data(+), Bark_data(+)
4170
      COM REAL Timings(8), Correct_data(+), Vign_data(+)
4188
      COM Start_time$[14]
4198
4200
      INTEGER I, J, K, First, Last, Toggle(16), Time(8, 3), Word
4210
      REAL Test_time
4228
      FOR I=0 TO 14
4238
         Toggle(1)=2^1
4248
      NEXT I
4258
      Toggle(15)=-32768
      IF Info=1 THEN
4268
4278
         GOSUB Execute
4288
      ELSE
4298
      IF Infor2 THEN
4308
         GOSUB Load_times
4310
      ELSE
4320
      IF Info=3 THEN
4330
         GOSUS Load_gain
4340
      IF Info=4 THEN
4350
         GOSUB Bma_picture
4360
4378
      END IF
4300
      END IF
4398
      END IF
4400
      END IF
      SUBEXIT
4410
4428 Execute: !
      MRITE 10 Select_code, 5; Toggle(8)
      MRITE BIN Select_code; Toggle(11)
      OUTPUT 9: "R"
      ENTER 9; Start_times
4468
4478
      SUBEXIT
4488 Load_times: |
4498
      First=2
4500
      Last=7
      GOSUS Load_values
4510
      SUBEXIT
     Load_gain: |
      Firstel
      Last=1
      60803 Load_values
      SUBEXIT
```

THE PROPERTY OF THE PARTY OF TH

```
4588 Bma_picture: !
      WRITE 10 Select_code,5; Toggle(8)
4590
4600
      Word=BINIOR(Toggle(14), Toggle(8))
      HRITE BIN Select_code; Hord
ENTER Select_code HDMA 18818 NOFORMAT; Raw_data(*)
4610
4620
4630
      WRITE IO Select_code, 5; Toggle(0)
      IF Do pixel_corret=1 THEN
FOR I=0 TO 99
4640
4650
4660
             FOR J=0 TO 96 STEP 2
4678
                 Rau_data(I,J+1)=(Rau_data(I,J)+Rau_data(I,J+2))/2
4600
             NEXT J
4690
          NEXT I
4700
      END IF
4710
      SUDEXIT
4728 Load values: !
      GOSUS Timings_to_time
4730
4748
      GOSUB Hp_to_register
      GOSUB Register_to_hp
4750
4760
      RETURN
4778 Hp_to_register: | 4788 FOR I=First TO Last
4790
          FOR J-0 TO 2
4888
             Hord=BINIOR(BINIOR(Toggle(15), Time(I, J>), Toggle(J+8>)
4818
             HRITE BIN Select_code; Hord
          NEXT J
4828
          Word=BINIOR(I+2^8, Toggle(13))
4830
4848
          HRITE BIN Select_code; Hord
4850
      NEXT I
4868
      RETURN
4878 Register_to_hp: !
4888 FOR I=First TO Last
4898
          Word=BINIOR(1+2^8, Toggle(12>)
4988
          HRITE BIN Select_code; Hord
          Hord=BINIOR(ToggTe(14),ToggTe(9))
4918
4920
          WRITE BIN Select_code; Word
          J=READBIN(Select_code)
4938
4940
          Timings(I)=0
4950
          FOR K=8 TO 14
4968
             IF BIT(J,K)=1 THEN Timings(I)=Timings(I)+Toggle(K)
4970
          NEXT K
4988
          IF BIT(J, 15)=1 THEN Timings(I)=Timings(I)+2^15
4990
          Hord=BIHIOR(Toggle(14),Toggle(18))
5000
          HRITE BIN Select_code; Hord
5010
          Timings(I)=Timings(I)+BINAND(255,READBIN(Select_code))+2^16
5020
          NEXT I
5030
      RETURN
5040 Timings_to_time: !
      FOR K=First TO Last
5050
          Test_time=Timings(K)
FOR I=2 TO @ STEP -1
5868
5070
5088
             Time(K, I)=8
5098
             FOR J=1+8+7 TO I+8 STEP -1
5100
                 IF Test_time-2^J>=0 THEN
5110
                    Time(K, I)=BINIOR(Time(K, I), Toggle(J-I#8))
5120
                    Test_time=Test_time-2^J
5138
                 END IF
5140
             NEXT J
5150
          NEXT I
      NEXT K
5160
      RETURN
5170
5180
      SUBEND
5190
      REM
5200
      REH
```

ACTION OF THE PROPERTY OF THE

